ON $(1,2)^*$ - $r\hat{g}$ -CLOSED SETS AND IT'S CHARACTERIZATIONS

^{1,2}K. BALASUBRAMANIYAN

¹Department of Mathematics,

Annamalai University, Annamalainagar-608 002, Chidambaram, Tamil Nadu, India.

²Department of Mathematics,

Arignar Anna Government Arts College, Vadachennimalai-636 121,

Salem District, Tamil Nadu, India.

e-mail : 1,2 kgbalumaths@gmail.com

ABSTRACT. In this paper is to introduce and study a new forms of generalized closed set namely $(1,2)^*-r\hat{g}$ -closed sets in bitopological spaces. This new class of closed set placed between $(1,2)^*-r$ -closed sets and $(1,2)^*-g$ -closed sets. We obtain several characterizations and some of their properties are investigate. Further, applying $(1,2)^*-r\hat{g}$ -closed sets to introduce a new class of space namely $(1,2)^*-T_{r\hat{g}}$ -space. Also investigate the relationship between this type of space and other existing spaces on the line of research.

1. Introduction

J.C.Kelly [1] was uttered the geometrical continuation of bitopological space that is a non empty set X together with two arbitrary topologies defined on X at the stage of significant study the shapes of objects. N. Levine [3] was initiated the study of generalizations of closed sets in topological spaces. M. Lellis Thivagar et al., [4] established the properties of new type of bitopological open sets which are entirely different from Kellys pairwise open sets called $\tau_{1,2}$ -open set and $\tau_1\tau_2$ -open set. He [7] was also discussed the behaviour of $(1,2)^*$ -open set, $(1,2)^*$ -semi open set with their continuity and defined various types

Corresponding Author: ^{1,2}K. Balasubramaniyan.

⁰2010 Mathematics Subject Classification: 54A05, 54A10, 54C08, 54C10

Key words and phrases. $(1,2)^*$ -r-closed sets, $(1,2)^*$ - \hat{g} -closed sets, $(1,2)^*$ - $r\hat{g}$ -closed sets and $(1,2)^*$ - $T_{r\hat{g}}$ -spaces

of bitopological generalized closed sets such as $(1,2)^*$ -sg-closed, $(1,2)^*$ -gs-closed sets and so on. In this paper is to introduce a new forms of closed sets called $(1,2)^*$ - $r\hat{g}$ -closed in bitopological spaces. This new class of closed set placed between $(1,2)^*$ -r-closed sets and $(1,2)^*$ -g-closed sets. We obtain several characterizations and some of their properties are investigate. Further, applying $(1,2)^*$ - $r\hat{g}$ -closed sets to introduce a new class of space namely $(1,2)^*$ - $T_{r\hat{g}}$ -space. Also investigate the relationship between this type of space and other existing spaces on the line of research.

2. Preliminaries

Throughout this paper, (X, τ_1, τ_2) (or simply X) represent bitopological spaces (or simply space) on which no separation axioms are assumed unless otherwise mentioned. For a subset $A \subseteq X$, the closure and the interior of A are denoted by $\tau_{1,2}$ -cl(A) and $\tau_{1,2}$ -int(A), respectively.

The following basic concepts are using in this paper.

Definition 2.1. Let S be a subset of X. Then S is said to be $\tau_{1,2}$ -open [5] if $S = A \cup B$ where $A \in \tau_1$ and $B \in \tau_2$.

The complement of $\tau_{1,2}$ -open set is called $\tau_{1,2}$ -closed.

Notice that $\tau_{1,2}$ -open sets need not necessarily form a topology.

Definition 2.2. [5] Let S be a subset of a bitopological space X. Then

- (1) the $\tau_{1,2}$ -closure of S, denoted by $\tau_{1,2}$ -cl(S), is defined as $\cap \{F : S \subseteq F \text{ and } F \text{ is } \tau_{1,2}\text{-closed}\}$.
- (2) the $\tau_{1,2}$ -interior of S, denoted by $\tau_{1,2}$ -int(S), is defined as $\cup \{F : F \subseteq S \text{ and } F \text{ is } \tau_{1,2}$ -open $\}$.

Definition 2.3. A subset A of a bitopological space (X, τ_1, τ_2) or X is said to be

- (1) $a (1,2)^*$ -semi open set [5] if $A \subseteq \tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A)).
- (2) $a (1,2)^*$ - α -open set [5] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl $(\tau_{1,2}$ -int(A))).

ON $(1,2)^*$ - $r\hat{q}$ -CLOSED SETS AND IT'S CHARACTERIZATIONS

- (3) $a (1,2)^*$ -pre open set [5] if $A \subseteq \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).
- (4) a $(1,2)^*$ -regular open set (briefly $(1,2)^*$ -r-open) [6] if $A = \tau_{1,2}$ -int $(\tau_{1,2}$ -cl(A)).

The complement of the above mentioned set is called a closed set.

Definition 2.4. [8] A subset A of a bitopological space (X, τ_1, τ_2) or X is said to be a $(1,2)^*$ -semi closure of A, denoted by $(1,2)^*$ -scl(A), is defined as $\cap \{F: S \subseteq F \text{ and } F \text{ is } (1,2)^*$ -semi closed $\}$.

Definition 2.5. A subset H of a bitopological space (X, τ_1, τ_2) or X is said to be

- (1) a $(1,2)^*$ -generalized closed set (briefly $(1,2)^*$ -g-closed) [9] if $\tau_{1,2}$ -cl $(H) \subseteq U$ whenever $H \subseteq U$ and U is $\tau_{1,2}$ -open.
- (2) a generalized $(1,2)^*$ -semi closed set (briefly $(1,2)^*$ -gs-closed) [7] if $(1,2)^*$ -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open.
- (3) a $(1,2)^*$ -semi generalized closed set (briefly $(1,2)^*$ -sg-closed) [7] if $(1,2)^*$ -scl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -semi-open.
- (4) an α generalized-closed set (briefly $(1,2)^*$ - αg -closed) [10] if $(1,2)^*$ - $\alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $\tau_{1,2}$ -open.
- (5) a generalized $(1,2)^*$ -pre-closed set (briefly $(1,2)^*$ -gp-closed) [5] if $(1,2)^*$ -pcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -open set.
- (6) a generalized $(1,2)^*$ - α -closed set (briefly $(1,2)^*$ - $g\alpha$ -closed) [10] if $(1,2)^*$ - α cl $(A) \subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ - α open set.
- (7) a generalized $(1,2)^*$ -pre-closed set (briefly $(1,2)^*$ -gp-closed) [5] if $(1,2)^*$ -pcl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -open set.
- (8) $a\ (1,2)^*$ - \hat{g} -closed $set(=(1,2)^*$ - ω -closed) [2] if $\tau_{1,2}$ -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is $(1,2)^*$ -semi open.

The complements of the above mentioned closed sets are called their respective open sets.

Definition 2.6. A bitopological space X is called, for a subset A is

- $(1) \ \ (1,2)^{\star} T_{\frac{1}{2}} space \ [11] \ \ if \ every \ \ (1,2)^{\star} g closed \ set \ in \ it \ is \ \tau_{1,2} closed.$
- (2) $(1,2)^*$ - T_b -space [11] if every $(1,2)^*$ -gs-closed set in it is $\tau_{1,2}$ -closed.
- (3) $(1,2)^*$ - $T_{\alpha\hat{q}}$ -space [8] if every $(1,2)^*$ - α -closed set in it is $\tau_{1,2}$ -closed.
- (4) $(1,2)^*$ - αT_b -space [12] if every $(1,2)^*$ - αg -closed set in it is $\tau_{1,2}$ -closed.

3. On
$$(1,2)^*$$
- $r\hat{g}$ -CLOSED SETS

Definition 3.1. A subset A of a bitopological space (X, τ_1, τ_2) is called a $(1, 2)^*$ - $r\hat{g}$ -closed set if $(1, 2)^*$ - $rcl(A) \subseteq U$ whenever $A \subseteq U$ and U is \hat{g} -open. The compliment of $(1, 2)^*$ - $r\hat{g}$ -closed set is said to be $(1, 2)^*$ - $r\hat{g}$ -open.

Theorem 3.2. In a bitopological space (X, τ_1, τ_2) , every $(1, 2)^*$ -r-closed is $(1, 2)^*$ -r \hat{g} -closed.

Proof. Let A be a $(1,2)^*$ -regular closed set and U be any $(1,2)^*$ - \hat{g} -open set containing A in (X,τ_1,τ_2) . Since A is $(1,2)^*$ -regular closed, $\tau_{1,2}$ - $cl(\tau_{1,2}$ -int(A)) = A For every subset A of X, which implies $(1,2)^*$ -rcl(A) = A. Therefore $(1,2)^*$ - $rcl(A) \subseteq U$. Thus A is $(1,2)^*$ - $r\hat{g}$ -closed set.

Remark 3.3. The reverse part of Theorem 3.2 is not true as seen from the following Example.

Example 3.4. Let $X = \{a, b, c, d, e, f\}$ be a non-empty set with $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{a, c\}, X\}$ then $\tau_{1,2} = \{\phi, \{a\}, \{a, c\}, X\}$. In the space (X, τ_1, τ_2) , we have the subset $\{a, b\}$ is $(1, 2)^*$ -r \hat{g} -closed set but not $(1, 2)^*$ -regular closed.

Theorem 3.5. In a bitopological space (X, τ_1, τ_2) , every $(1, 2)^*$ -r \hat{g} -closed set is $(1, 2)^*$ -g-closed.

Proof. Let A be a $(1,2)^*$ - $r\hat{g}$ -closed set and U be any $\tau_{1,2}$ -open set containing A in (X,τ_1,τ_2) . Since every $\tau_{1,2}$ -open set is $(1,2)^*$ - \hat{g} -open and A is $(1,2)^*$ - $r\hat{g}$ -closed, $(1,2)^*$ - $rcl(A) \subseteq U$ for every subset A of X. Since $\tau_{1,2}$ - $cl(A) \subseteq (1,2)^*$ - $rcl(A) \subseteq U$. Which implies $\tau_{1,2}$ - $cl(A) \subseteq U$. Hence A is $(1,2)^*$ -g-closed.

ON $(1,2)^*$ - $r\hat{q}$ -CLOSED SETS AND IT'S CHARACTERIZATIONS

Remark 3.6. The reverse part of Theorem 3.5 is not true as seen from the following Example

Example 3.7. Let $X = \{a, b, c\}$ be a non-empty set with $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$ then $\tau_{1,2} = \{\phi, \{a\}, \{b, c\}, X\}$. In the space (X, τ_1, τ_2) , we have the subset $\{a, b\}$ is $(1, 2)^*$ -g-closed but not $(1, 2)^*$ -r \hat{g} -closed.

Theorem 3.8. In a bitopological space (X, τ_1, τ_2) , every $(1, 2)^*$ -r \hat{g} -closed set is $(1, 2)^*$ -gs-closed.

Proof. Let A be a $(1,2)^*$ - $r\hat{g}$ -closed set and U be any $\tau_{1,2}$ -open set containing A in (X,τ_1,τ_2) . Since every $\tau_{1,2}$ -open set is $(1,2^*)$ - \hat{g} -open and A is $(1,2)^*$ - $r\hat{g}$ -closed, $(1,2)^*$ - $rcl(A) \subseteq U$ for every subset A of X. Since $(1,2)^*$ - $scl(A) \subseteq (1,2)^*$ - $rcl(A) \subseteq U$ which implies $\tau_{1,2}$ - $cl(A) \subseteq U$. Thus A is $(1,2)^*$ -gs-closed.

Remark 3.9. The reverse part of Theorem 3.8 is not true as seen from the following Example

Example 3.10. Let $X = \{a, b, c\}$ be a non-empty with $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b\}, \{a, b\}, X\}$ then $\tau_{1,2} = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. In the space (X, τ_1, τ_2) , we have the subset $\{a\}$ is $(1, 2)^*$ -gs-closed but not $(1, 2)^*$ -r \hat{g} -closed.

Remark 3.11. The notions of $(1,2)^*$ -r \hat{g} -closed sets and the notions of $(1,2)^*$ -sg-closed sets are independent of a bitopolytical space (X, τ_1, τ_2) as seen from the following Examples.

Example 3.12. Let $X = \{a, b, c\}$ be a non-empty with $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, X\}$ then $\tau_{1,2} = \{\phi, \{a\}, X\}$. In a space (X, τ_1, τ_2) , we have the subset $\{a, b\}$ is $(1, 2)^*$ -r \hat{g} -closed but not $(1, 2)^*$ -sg-closed.

Example 3.13. Let $X = \{a, b, c\}$ be a non-empty with $\tau_1 = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{a, b\}, X\}$ then $\tau_{1,2} = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. In the space (X, τ_1, τ_2) , we have the subset $\{b\}$ is $(1, 2)^*$ -sg-closed but not $(1, 2)^*$ -r \hat{g} -closed.

Theorem 3.14. In a bitopological space (X, τ_1, τ_2) , every $(1, 2)^*$ -r \hat{g} -closed set is $(1, 2)^*$ - αg -closed.

Proof. Let A be a $(1,2)^*$ - $r\hat{g}$ -closed set and U be any $\tau_{1,2}$ -open set containing A in (X,τ_1,τ_2) . Since every $\tau_{1,2}$ -open set is $(1,2^*)$ - \hat{g} -open, $(1,2)^*$ - $rcl(A) \subseteq U$ for every subset A of X. Since $(1,2)^*$ - $\alpha cl(A) \subseteq (1,2)^*$ - $rcl(A) \subseteq U$, which implies $(1,2)^*$ - $\alpha cl(A) \subseteq U$. Thus A is $(1,2)^*$ - αg -closed.

Remark 3.15. The reverse part of Theorem 3.14 is not true as seen from the following Example.

Example 3.16. Let $X = \{a, b, c\}$ be a non-empty with $\tau_1 = \{\phi, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{b\}, X\}$ then $\tau_{1,2} = \{\phi, \{b\}, \{a, b\}, X\}$. In the space (X, τ_1, τ_2) , we have the subset $\{a\}$ is $(1, 2)^*$ - αg -closed but not $(1, 2)^*$ - $r\hat{g}$ -closed.

Remark 3.17. The notions of $(1,2)^*$ -r \hat{g} -closed sets and the notions $(1,2)^*$ -g α -closed sets are independent of a space (X,τ_1,τ_2) as seen from the following Examples.

Example 3.18. Let $X = \{a, b, c\}$ be a non-empty with $\tau_1 = \{\phi, \{a\}, \{b, c\}, X\}$ and $\tau_2 = \{\phi, \{a\}, X\}$ then $\tau_{1,2} = \{\phi, \{a\}, \{b, c\}, X\}$. In the space (X, τ_1, τ_2) , we have the subset $\{a, b\}$ is $(1, 2)^*$ -g α -closed but not $(1, 2)^*$ -r \hat{g} -closed.

Example 3.19. Let $X = \{a, b, c\}$ be a non-empty with $\tau_1 = \{\phi, \{b\}, X\}$ and $\tau_2 = \{\phi, X\}$ then $\tau_{1,2} = \{\phi, \{b\}, X\}$. In the space (X, τ_1, τ_2) , we have the subset $\{a, c\}$ is $(1, 2)^*$ -r \hat{g} -closed but not $(1, 2)^*$ -g α -closed.

Theorem 3.20. In a bitopological space (X, τ_1, τ_2) , every $(1, 2)^*$ -r \hat{g} -closed set $(1, 2)^*$ -gp-closed.

Proof. Let A be a $(1,2)^*$ - $r\hat{g}$ -closed set and U be any $\tau_{1,2}$ -open set containing A in (X,τ_1,τ_2) . Since every $\tau_{1,2}$ -open set is $(1,2^*)$ - \hat{g} -open, $(1,2)^*$ - $rcl(A) \subseteq U$ for every subset A of X. Since $(1,2)^*$ - $pcl(A) \subseteq (1,2)^*$ - $rcl(A) \subseteq U$ which implies $(1,2)^*$ - $pcl(A) \subseteq U$ and hence A is $(1,2)^*$ -gp-closed.

ON $(1,2)^*$ - $r\hat{g}$ -CLOSED SETS AND IT'S CHARACTERIZATIONS

Remark 3.21. The reverse part of Theorem 3.20 is not true as seen in the following Example.

Example 3.22. Let $X = \{a, b, c\}$ be a non-empty with $\tau_1 = \{\phi, \{a, b\}, X\}$ and $\tau_2 = \{\phi, X\}$ then $\tau_{1,2} = \{\phi, \{a, b\}, X\}$. In the space (X, τ_1, τ_2) , we have the subset $\{a\}$ is $(1, 2)^*$ -gp-closed but not $(1, 2)^*$ -r \hat{g} -closed.

Remark 3.23. Obtain in the following Figure-I.

$$(1,2)^{\star}\text{-}gp\text{-}\mathbf{closed}$$

$$\uparrow \\ (1,2)^{\star}\text{-}r\text{-}\mathbf{closed} \qquad \Rightarrow (1,2)^{\star}\text{-}r\hat{g}\text{-}\mathbf{closed} \qquad \Rightarrow (1,2)^{\star}\text{-}g\text{-}\mathbf{closed}$$

$$\downarrow \\ (1,2)^{\star}\text{-}gs\text{-}\mathbf{closed}$$

Remark 3.24. Obtain in the following Figure-II.

$$(1,2^{\star})\text{-}\hat{g}\text{-}\mathbf{closed} \qquad \Leftrightarrow (1,2)^{\star}\text{-}r\hat{g}\text{-}\mathbf{closed} \qquad \Leftrightarrow (1,2)^{\star}\text{-}\alpha\text{-}\mathbf{closed}$$

Where $A \Leftrightarrow B$ represents A and B are independent of each other.

4. Other characterizations

Theorem 4.1. The union two $(1,2)^*$ -r \hat{g} -closed subsets is always $(1,2)^*$ -r \hat{g} -closed of a space (X, τ_1, τ_2) .

Proof. Assuming that A and B are two $(1,2)^*$ - $r\hat{g}$ -closed subset of X. Let U be a $(1,2^*)$ - \hat{g} -open set in X such that $A \cup B \subseteq U$, then $A \subseteq U$ and $B \subseteq U$. Since A and B are $(1,2)^*$ - $r\hat{g}$ -closed subset of X, $(1,2)^*$ - $rcl(A) \subseteq U$ and $(1,2)^*$ - $rcl(B) \subseteq U$, but $(1,2)^*$ - $rcl(A \cup B) \subseteq (1,2)^*$ - $rcl(A) \cup (1,2)^*$ - $rcl(B) \subseteq U$. Hence $A \cup B$ is also a $(1,2)^*$ - $r\hat{g}$ -closed subset of X.

Remark 4.2. The finite intersection of $(1,2)^*$ -r \hat{g} -closed sets but not $(1,2)^*$ -r \hat{g} -closed of a space (X, τ_1, τ_2) as seen from the following Example.

Example 4.3. Let $X = \{a, b, c\}$ be a non-empty set with $\tau_1 = \{\phi, \{c\}, X\}$ and $\tau_2 = \{\phi, X\}$ then $\tau_{1,2} = \{\phi, \{c\}, X\}$. In the space (X, τ_1, τ_2) , we have the subsets $C = \{a, c\}$ and $D = \{b, c\}$ are $(1, 2)^*$ -r \hat{g} -closed sets but $E = C \cap D = \{c\}$ is not $(1, 2)^*$ -r \hat{g} -closed.

Theorem 4.4. Let A be a $(1,2)^*$ -r \hat{g} -closed set of (X, τ_1, τ_2) . Then $(1,2)^*$ -rcl(A) — A does not contain a non-empty $(1,2^*)$ - \hat{g} -closed set.

Proof. Suppose that A is $(1,2)^*-r\hat{g}$ -closed. Let H be non-empty $(1,2^*)-\hat{g}$ -closed set contained in $(1,2)^*-rcl(A)-A$. Now H^c is $(1,2)^*-\hat{g}$ -open set of (X,τ_1,τ_2) such that $A\subseteq H^c$. Since A is $(1,2)^*-r\hat{g}$ -closed set of (X,τ_1,τ_2) , $(1,2)^*-rcl(A)\subseteq H^c$. Thus $G\subseteq ((1,2)^*-rcl(A)-A$. Therefore $H\subseteq ((1,2)^*-rcl(A))^c\cap (1,2)^*-rcl(A)=\phi$, Hence $H=\phi$. Which is contradiction to the assumption $H\neq \phi$. Hence $(1,2)^*-rcl(A)-A$ does not contain a non-empty $(1,2^*)-\hat{g}$ -closed set.

Theorem 4.5. For A subset of a bitopological space (X, τ_1, τ_2) , if A is $(1, 2^*)$ - \hat{g} -open and $(1, 2)^*$ - $r\hat{g}$ -closed subset then A is a $(1, 2)^*$ -r-closed.

Proof. Since A is $(1, 2^*)$ - \hat{g} -open and $(1, 2)^*$ - $r\hat{g}$ -closed subset of $(X, \tau_1, \tau_2), (1, 2)^*$ - $rcl(A) \subseteq A$. Hence A is $(1, 2)^*$ -r-closed.

Theorem 4.6. In a bitopological space (X, τ_1, τ_2) , the intersection of $(1, 2)^*$ -r \hat{g} -closed and $(1, 2)^*$ -r-closed is always $(1, 2)^*$ -r \hat{g} -closed.

Proof. Let A be $(1,2)^*-r\hat{g}$ -closed and let G be $(1,2)^*-r$ -closed. If F is a $(1,2^*)-\hat{g}$ -open set containing $A \cap G$, $A \cap G \subseteq F$, then $A \subseteq F \cup G^c$ and so $(1,2)^*-rcl(A) \subseteq F \cup G^c$. Now $(1,2)^*-rcl(A \cap G) \subseteq (1,2)^*-rcl(A) \cap G \subseteq F$. Thus $A \cap G$ is $(1,2)^*-r\hat{g}$ -closed.

Theorem 4.7. If A is $(1,2)^*$ -r \hat{g} -closed and $A \subseteq B \subseteq (1,2)^*$ -rcl(A) of a space (X,τ_1,τ_2) , then B is also a $(1,2)^*$ -r \hat{g} -closed of a space (X,τ_1,τ_2) .

ON $(1,2)^*$ - $r\hat{g}$ -CLOSED SETS AND IT'S CHARACTERIZATIONS

Proof. Let H be an $(1,2^*)$ - \hat{g} -open set of (X,τ_1,τ_2) such that $B\subseteq H$. Then $A\subseteq H$, since A is $(1,2)^*$ - $r\hat{g}$ -closed set, $(1,2)^*$ - $rcl(A)\subseteq U$. Also since $B\subseteq (1,2)^*$ - $rcl(A), (1,2)^*$ - $rcl(B)\subseteq (1,2)^*$ - $rcl((1,2)^*$ - $rcl(A))=(1,2)^*$ -rcl(A). Hence $(1,2)^*$ - $rcl(B)\subseteq H$. Therefore B is also a $(1,2)^*$ - $r\hat{g}$ -closed set.

5. Applications

Definition 5.1. A bitopological space (X, τ_1, τ_2) is called $(1, 2)^*$ - $T_{r\hat{g}}$ -space if every $(1, 2)^*$ - $r\hat{g}$ -closed set is $(1, 2)^*$ -r-closed.

Theorem 5.2. For a bitopological space (X, τ_1, τ_2) the following conditions are equivalent:

- (1) (X, τ_1, τ_2) is a $(1, 2)^*$ - $T_{r\hat{g}}$ -space.
- (2) Every singleton $\{x\}$ is either $(1,2^*)$ - \hat{g} -closed or $(1,2)^*$ -regular open.

Proof. (1) \Rightarrow (2) Let $x \in X$, Suppose $\{x\}$ is not a $(1, 2^*)$ - \hat{g} -closed set of (X, τ_1, τ_2) . Then $X - \{x\}$ is not a $(1, 2^*)$ - \hat{g} -open set. Thus $X - \{x\}$ is a $(1, 2)^*$ - $r\hat{g}$ -closed set of (X, τ_1, τ_2) . Since (X, τ_1, τ_2) is $(1, 2)^*$ - $T_{r\hat{g}}$ -space , $X - \{x\}$ is a $(1, 2)^*$ -r-closed set of (X, τ_1, τ_2) . That is $\{x\}$ is $(1, 2)^*$ -r-open set of (X, τ_1, τ_2) .

 $(2) \Rightarrow (1)$ Let A be a $(1,2)^*$ - $r\hat{g}$ -closed set of (X, τ_1, τ_2) . Let $x \in \tau_{1,2}$ -rcl(A), By (2) $\{x\}$ is either $(1,2^*)$ - \hat{g} -closed or $(1,2)^*$ - $r\hat{g}$ -open.

Case(i): Let $\{x\}$ be $(1,2^*)$ - \hat{g} -closed. If we assume that $x \in A$, then we would have $x \in \tau_{1,2}$ -rcl(A) - A. Hence $x \in A$.

Case (ii): Let $\{x\}$ be $(1,2)^*$ -r-open, since $x \in (1,2)^*$ -rcl(A). $\{x\} \cap A \neq \phi$. This shows that $x \in A$. So in the both cases we have $(1,2)^*$ - $rcl(A) \subseteq A$. Trivially $A \subseteq (1,2)^*$ -rcl(A). Therefore $A = (1,2)^*$ -rcl(A), which implies A is $(1,2)^*$ -r-closed. Hence (X,τ_1,τ_2) is $(1,2)^*$ - $T_{r\hat{g}}$ -space.

Theorem 5.3. Every $(1,2)^*$ - $T_{r\hat{g}}$ -space is $(1,2)^*$ - $T_{\alpha\hat{g}}$ -space.

Proof.: Let (X, τ_1, τ_2) be a $(1, 2)^*$ - $T_{r\hat{g}}$ -space. Then every singleton is either $(1, 2^*)$ - \hat{g} -closed or $(1, 2)^*$ -r open. Since every $(1, 2)^*$ -r-open is $(1, 2)^*$ - α -open, every singleton is either $(1, 2^*)$ - \hat{g} -closed or $(1, 2)^*$ - α -open, Hence (X, τ_1, τ_2) is a $(1, 2)^*$ - $T_{r\hat{g}}$ -space.

Remark 5.4. The reverse part of Theorem 5.3 is not true as seen from the following Example.

Example 5.5. Let $X = \{a, b, c\}$ be a non-empty set with $\tau_1 = \{\phi, \{a\}, \{a, b\}, X\}$ and $\tau_2 = \{\phi, \{b\}, \{a, b\}, X\}$ then $\tau_{1,2} = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$. We have $(1, 2)^*$ - $T_{\alpha\hat{g}}$ -space but not $(1, 2)^*$ - $T_{r\hat{g}}$ -space.

Remark 5.6. The $(1,2)^*$ - $T_{\frac{1}{2}}$ -space and $(1,2)^*$ - $T_{r\hat{g}}$ -space are independent as seen from the following Examples.

Example 5.7. Let $X = \{a, b, c\}$ be a non-empty set with $\tau_1 = \{\phi, \{a\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, \{c\}, \{a, c\}, X\}$ then $\tau_{1,2} = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. We have (X, τ_1, τ_2) is a $(1, 2)^*$ - $T_{\frac{1}{2}}$ -space but not $(1, 2)^*$ - $T_{r\hat{g}}$ -space.

Example 5.8. Let $X = \{a, b, c\}$ be a non-empty set with $\tau_1 = \{\phi, \{a\}, X\}$ and $\tau_2 = \{\phi, \{b, c\}, X\}$ then $\tau_{1,2} = \{\phi, \{a\}, \{b, c\}, X\}$. We have (X, τ_1, τ_2) is a $(1, 2)^*$ - $T_{r\hat{g}}$ -space but not $(1, 2)^*$ - $T_{\frac{1}{2}}$ -space.

Remark 5.9. The $(1,2)^*$ - $T_{r\hat{g}}$ -space is independent of $(1,2)^*$ - T_b -space as seen from the following Examples.

Example 5.10. Let $X = \{a, b, c\}$ be a non-empty set with $\tau_1 = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$ and $\tau_2 = \{\phi, X\}$ then $\tau_{1,2} = \{\phi, \{a\}, \{a, b\}, \{a, c\}, X\}$. We have (X, τ_1, τ_2) is $(1, 2)^*$ - T_b -space but not $(1, 2)^*$ - $T_{r\hat{a}}$ -space.

Example 5.11. Let $X = \{a, b, c\}$ be a non-empty set with $\tau_1 = \{\phi, X\}$ and $\tau_2 = \{\phi, \{b\}, \{a, c\}, X\}$ then $\tau_{1,2} = \{\phi, \{b\}, \{a, c\}, X\}$. We have (X, τ_1, τ_2) is $(1, 2)^* - T_{r\hat{g}}$ -space but not $(1, 2)^* - T_b$ -space.

ON $(1,2)^*$ - $r\hat{q}$ -CLOSED SETS AND IT'S CHARACTERIZATIONS

Remark 5.12. Obtain in the following Figure-III.

$$(1,2)^{\star}\text{-}T_{\alpha\hat{g}}\text{-}\mathbf{space}$$

$$\uparrow$$

$$(1,2)^{\star}\text{-}T_{\frac{1}{2}}\text{-}\mathbf{space}\qquad \Leftrightarrow (1,2)^{\star}\text{-}T_{r\hat{g}}\text{-}\mathbf{space}\qquad \Leftrightarrow (1,2)^{\star}\text{-}T_{b}\text{-}\mathbf{space}$$

- (1) Where $A \to B$ represents A implies B but not converse.
- (2) Where $A \Leftrightarrow B$ represents A and B are independent.

References

- [1] J. C. Kelly, Bitopological spaces, Proc. London. Math Soc., 3(13) (1963), 71-89.
- [2] S. Jafari, M. Lellis Thivagar and Nirmala Mariappan, On $(1,2)^*$ - \hat{g} -closed sets, J. Adv. Math. Studies., 2(2)(2009), 25-34.
- [3] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 17(2) (1970), 89-96.
- [4] M. L. Thivagar, Generalization of pairwise α-continuous functions, Pure and Applied Mathematicka Sciences., 28(1991), 55-63.
- [5] M. L. Thivagar and O. Ravi, On stronger forms of (1,2)*-quotient function in bitopological spaces, Int.
 J. Math. Game theory and Algebra. Vol. 14, No. 6, (2004), 481-492.
- [6] O. Ravi, E. Ekici and M. Lellis Thivagar, On (1,2)*-sets and decompositions of bitopological (1,2)*continuous mappings, Kochi J. Math., 3(2008), 181-189.
- [7] O. Ravi and M. L. Thivagar, A bitopological $(1,2)^*$ -Semi-generalized continuous maps, Bull. Malaysian Math. Sci. Soc., (2)(29)(1)(2006), 76-88.
- [8] O. Ravi, M. L. Thivagar and E. Hatir, Decomposition of (1,2)*-continuity and (1,2)*-α-continuity, Miskolc Mathematical Notes., 10(2) (2009), 163-171.
- [9] O. Ravi, M. L. Thivagar and Jinjinli, Remarks on extensions of (1,2)*-g-closed function in bitopology,
 Archimedes J. Math, 1(2) (2011), 177-187.
- [10] O. Ravi, M. L. Thivagar and A. Nagarajan, $(1, 2)^*$ - αq -closed sets and $(1, 2)^*$ - $q \alpha$ -closed sets (submitted).
- [11] M. Rajakalaivanan, Some contributions to bitopological spaces, Ph. D Thesis, Madurai Kamaraj University, Madurai, December 2012.
- [12] C. Rajan, Futher study of new bitopological generalized continuous functions, Ph. D Thesis, Madurai Kamaraj University, Madurai, November 2014.